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Supplementary Methods 
 

Cultivation conditions  

Yeast strains were grown in fermenters, essentially as described before [1]. A set of 

chemostat cultures under C-, N-, P- and S-limiting conditions were established at a series of 

dilution rates (0.07, 0.10, 0.20 h-1).  Cultures were fed with a defined mineral medium 

limiting growth by carbon, nitrogen, phosphorus, or sulphur [1], all other nutritional 

requirements were in excess at a constant residual concentration. Glucose and vitamins were 

added to the medium after separate sterilization. Glucose was heat-sterilized at 120ºC. 

Vitamins were prepared and sterilized by filtration through 0.2 µm filters (Sartopore®2, 

Sartorius, UK). Chemostat cultivation was performed in 2-litre fermenters (FT Applikon 

Ltd., UK) with a working volume of 1.0 litre, a temperature of 30ºC and a stirrer speed of 

750 rpm. The culture pH was maintained at 5.0 by automatic addition of 2 M NaOH or HCl 

as required, via an Applikon ADI-1030 biocontroller. Aerobic cultivation was performed by 

maintaining an air flow of 1.0 litre min-1. The dissolved oxygen concentration in all 

chemostat cultures, as measured with an Ingold polarographic oxygen electrode, was above 

50% of saturation. To avoid loss of volatile metabolites, the off-gas condenser was cooled to 

4ºC, connected to a cryostat. Off-gas oxygen and carbon dioxide levels were monitored with 

a Tandem gas analyser (Magellan Instruments, UK). Steady state conditions were deemed 

established once biomass levels (absorbance and dry weight measurements), dissolved 

oxygen, and off-gas fractions remained constant over three residence times (three volume 

changes) [2]. For the rapamycin study, a batch culture growing at mid-exponential phase in 

minimal medium [3] was established under the same cultivation conditions as for chemostat 

experiments. This was divided into two flasks. Rapamycin (200 ng ml-1) was added to one 

half, and the vehicle added to the other, as the control. Samples were taken at 0, 1, 2 and 4h 

after the treatment. 
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On-line and off-line measurements 

Dissolved oxygen, oxygen and carbon dioxide gas levels were monitored on-line. At 

appropriate intervals, culture samples were collected for determination of biomass 

concentration. Biomass levels were monitored both spectrophotometrically at a wavelength 

of 600 nm, and by dry weight.  Dry weight measurements were determined as described by 

Postma et al. (1989) [4]. The purity of the cultures was routinely checked by phase-contrast 

microscopy and by plating on selective media. 

 

Transcriptional studies. Labelling, hybridisation and scanning protocols. Data analysis. 

Total RNA was extracted from biomass as previously described [5]. Microarray 

experiments were performed using Affymetrix Yeast YG_S98 GeneChip oligonucleotide 

arrays (Affymetrix, Inc. USA) as described [6], according to the manufacturer’s instructions 

[7]. Briefly, 15 µg of total RNA was used to prepare first strand cDNA using an oligo(dT)-

T7 primer. Following second strand synthesis, biotinylated cRNA targets were generated 

using the Enzo Bio Array High Yield RNA Transcript Labelling Kit (Affymetrix, Inc. USA) 

by in vitro transcription with biotinylated UTP and CTP. The fragmented cRNA targets 

together with labelled controls were hybridized to the arrays at 45ºC, rotating at 60 rpm for 

16 h according to the manufacturer’s instructions. Following hybridization, the arrays were 

processed using Affymetrix fluidics protocol “EukGE-WS2”, and stained with R-

phycoerythrin conjugated to streptavidin (Molecular Probes, Inc. USA). Images of the arrays 

were acquired using the Microarray suit (MAS) v5.0 software and an Affymetrix 2500 

GeneChip scanner. For each of 12 conditions (four nutritional limitations at three dilution 

rates) four arrays were carried out. Robust Multichip Average (RMA) quantile normalization 

[8, 9] and further analysis were carried out using RMAExpress software [10]. YG_S98 Affy 

probes marked as ‘Gene1///Gene2’ in the Gene Symbol column from Affymetrix annotation, 
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correspond to probe sets which are insufficiently discriminatory to resolve between both 

genes (Affymetrix personal communication). Low-abundance transcripts for the culture 

conditions tested (C, N, P, and S-limitation) were obtained by calculating the mean 

expression level for each condition and finding those probe sets whose expression  level was 

below 100 (6.644 in log2) under all conditions (see Tables S3 and S4). In compliance with 

MIAME guidelines [11], the data from these studies have been submitted to the 

ArrayExpress repository [12] at the European Bioinformatics Institute (EBI) under accession 

numbers E-MEXP-115 and E-MAXD-4 (for the rapamycin studies).  

 

Data analysis and processing for Principal Components Analysis (PCA) 

The objective was to measure the response to growth and nutrient limitation at several 

‘omic levels in order to discover clustering patterns and trends and, in so doing, understand 

how the ‘cell system’ responds as a whole. Principal Components Analysis (PCA) [13] is 

suited to this purpose because it is an unsupervised multivariate approach that considers all 

the variables at once and then performs dimensional reduction giving greatest weight to 

variables that change the most.  

Exploratory cluster analysis using Principal Components Analysis (PCA) was then 

performed on the transcriptional and proteome data and metabolic profiles. Since 

transcriptome, proteome and metabolome data needed to be gathered by different 

methodologies, data analysis procedures were required to minimize systematic bias imposed 

by differences in measurement techniques, and to be consistent in data processing prior to 

PCA. Table 1 summarizes the data analysis steps performed to handle each class of ‘omic 

data, some of which are explained below. We have sought to be consistent throughout, for 

example logarithmic transformations were applied to all data types. On the other hand, 

particular data types required treatments that others did not (e.g. microarray data required no 

 4



missing value imputation whereas other data types did). The integration of data sets from the 

different levels of 'omic analysis will be a recurrent theme in both Functional Genomics and 

Systems Biology. Standard approaches need to be developed and, whilst these are beyond 

the scope of this contribution, we will publish a separate paper to discuss these problems. 

Briefly, the transcriptome data were subjected to a background adjustment, RMA quantile 

normalization and summarization using RMAExpress software [10], and centring MAD 

(Median Absolute Deviation) normalization [14]. For the proteomics PCA analysis, after 

each run was normalized to pooled standard (Fig. S28), sample-wise MAD normalization 

[14], missing-value imputation (MVI) using Bayesian missing value estimation method [15] 

and measurement-wise MAD normalization [14] were performed. For the metabolome data, 

metabolite samples were normalized to internal standard. Missing-value imputation (MVI) 

[15] and measurement-wise MAD normalization [14] were applied (Table 1). PCA was 

performed with Matlab® Version 6.5 [16] running under Windows XP on an IBM-

compatible PC, and the PCA implemented using the NIPALS algorithm [17]. The results 

obtained from these analyses were then visualized using Spotfire®DecisionSiteTM 7.3 

version 11.0 [18].  

 

Transcriptome  and  proteome signatures, and changes in metabolite levels  

To facilitate comparison of transcriptome and proteome patterns, growth rates 0.1 h-1 and 

0.2 h-1 were compared. For each nutrient limitation, the relative change in expression was 

analysed between the growth rates. In the iTRAQ proteome studies, since there was no 

replication this was simply calculated as the log and natural relative expression. Prior to this 

the logged data were normalized measurement-wise per run to the pooled standard and then 

normalized sample-wise by MAD, scaling to average MAD. For transcriptome studies a 

modified t-test, Cyber-T [19, 20] with p-value and false discovery rate (q-value) calculation 
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[21, 22] was applied on the RMA-normalized data. Relative metabolite levels (0.2 vs 0.1 h-1) 

were obtained by normalization of each metabolite peak area to the internal standard. 

 

Transcriptional studies. Global gene expression analysis. ANOVA/ANCOVA model. 

The normalized logged intensities were analysed to identify probes from those genes 

whose expression level was regulated predominantly by growth rate (µ), irrespective of the 

identity of the growth-limiting nutrient, (l). This suggested an Analysis Of Variance 

(ANOVA) of the normalized logged intensities should be performed [23, 24]. 

 In principle, normalization should have removed a number of main and interaction effects 

that are independent of specific probes, i.e. global biases. Therefore, we considered all 

remaining effects to be probe-dependent and performed the ANOVA on a probe-by-probe 

basis. Denoting the logged intensity for the lth medium limitation, rth rate and kth replicate by 

ylrk , we have the ANOVA model: 

ylrk = µ + Ll + Rr + LRlr + εlrk ,      (1)

with ΣlLl = 0, ΣrRr = 0, ΣlLRlr = ΣrLRlr = 0 , 

E(εlrk) = 0, E(εlrk
2) = σ2 . 

The significances of the main effects and interaction term are determined by calculating 

their appropriate F test statistic [23]. Following Kerr et. al. (2000) [24], p-values were 

estimated by re-sampling from suitably re-scaled residuals [25] under a homoskedastic 

assumption that the same value for σ2 was appropriate for each probe. We fitted the ANOVA 

model in (1) to 106 re-sampled data sets. The effect of multiple testing was accounted for by 

estimating the false discovery rate (FDR) using the q-value method and R-code of Storey 

[21, 22], for which default settings were used. For the main effects and interaction term, a q-

value was calculated for each probe. The growth rate is a continuous-valued parameter that 

denotes the local specific change in biomass concentration in the controlled culture. The 
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ANOVA coefficients Rr and LRlr represent the limitation-independent and limitation-specific 

effect of growth rate on transcriptional gene expression, respectively. Both the limitation-

independent and limitation-specific effects will contain a linear component, proportional to 

growth rate, and a non-linear component.  From a biological perspective, we might expect 

the response to growth rate of transcriptional gene expression to be predominantly 

proportional, with participation of a second smaller non-linear component. Therefore, we 

decided to treat the growth rate quantitatively and identify the contribution to the total 

variance of the linear response component, equivalent to performing an Analysis of 

Covariance (ANCOVA), even though r takes on a finite set of values and is considered to be 

controlled without error. The main growth rate effect and interaction terms can be 

decomposed into a linear and non-linear component, 

Rr = a0∆r + δRr,    LRlr = al∆r + δLRlr

∆r = r – r ,   Σlal = 0,   

ΣrδRr = 0,  Σr∆rδRr = 0,  ΣrδLRlr = 0,  ΣlδLRlr = 0,  Σr∆rδLRlr = 0, 

where r  = (0.07+0.1+0.2)/3 is the average of the growth rates studied. Of those probes 

(4307/9335) for which the main effect due to rate in the ANOVA model was significant (q < 

0.01) only 2.9% showed a significant (q < 0.01) non-linear effect. Of those probes 

(1746/9335) for which the interaction term in (1) was significant (q<0.01), 32.9% had a 

significant non-linear contribution. This suggests that the large majority of probes show a 

predominantly linear response to the effect of rate. We therefore decided to use the linear 

model as a basis of further filtering probes for subsequent analysis. a0 represents the, 

limitation-independent, transcriptional response to growth rate. A large positive value of a0 

indicates a substantial element of up-regulation of transcriptional gene expression with 

increasing growth rate. Correspondingly, a large negative value of a0 indicates a substantial 

limitation-independent element of down-regulation of gene expression with increasing 
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growth rate. The notion of a probe (gene) being growth-rate-regulated was interpreted as 

meaning that the main effect of rate, a0, was dominant over any interaction between growth 

rate and the type of limiting medium. Thus, for each probe, the ratio of the proportion of the 

total variance explained by the main rate effect, a0, to the proportion of the total variance 

explained by the interaction term was calculated. This is equivalent to calculating the ratio 

M2 = a0
2 / ¼Σl al

2. This has the intuitive interpretation that a large value of M indicates that 

rate largely has the same general effect irrespective of the type of limited medium. Probes 

representing growth-rate-regulated ORFs are then represented by statistically significant 

values of a0 and correspondingly large values of M. These were selected by constructing a 

conservative p-value estimate as the proportion of re-sampled data sets in which either the 

observed value of M or the observed F-statistic for a0 was exceeded. Associated q-values 

were calculated in the same manner as before, and probes filtered by applying a cut-off to the 

q-value. 

 

Global data analysis of transcriptional studies gene lists 

From the ANCOVA results, normalized, filtered data (focussing on genes of known 

function; ‘Eisen’ plots [26] (Fig. S3 and S4) and tables of significantly up- and down-

regulated genes on the basis of q were obtained. The ‘Eisen’ plots were created with 

maxdView (available from [27]). The data for each gene in log. base 2 were normalized by z 

transformation (mean set to 0 and standard deviation 1). To facilitate visual comparison, the 

colours were set to a linear ramp of green for expression below the mean, through black for 

no change from the mean, to red for expression above the mean. 

Clusters/groups of probesets (genes) judged to be most significantly up- or down-regulated 

with growth rate were formed based on a rank of our ANCOVA false discovery rate q (see 

above). We sought two clusters of well-annotated genes for subsequent analysis. The dataset 
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was therefore filtered for probesets with "Gene Symbol" annotation in the most recent 

Affymetrix annotation update (July 12th, 2006). To enable robust gene ontology analysis q 

cut-offs were selected and fixed based on q = 0.05 (5%) for up- and down-regulated genes. 

Gene ontology analyses (GoMiner, GenMAPP, see below) focussed mainly on most 

significantly growth-regulated genes (q < 0.05), with GenMAPP analyses extending the study 

including significantly growth-regulated genes in the range (0.05 < q <0.10) (see results). 

For the rapamycin study, all the probesets on the array were subjected to a two-way 

ANOVA analysis (time and rapamycin factors) using GeneSpring® software (Agilent 

Technologies, Santa Clara, CA) [28]. The p-values arising from this analysis were subjected 

to a false discovery rate estimation using default settings of the Q-value software [22]. 

Probesets that had a q-value less than 0.05 for the rapamycin and interaction factors were 

regarded as significantly affected by rapamycin treatment and used in further analysis. For 

the elucidation of groups of over- or under-represented genes, a standard binomial test was 

used [29]. 

 

Proteomics ANOVA 
 
The MAD-normalized proteomics log.-ratios (ratio to pooled standard, Fig. S28) were 

taken as the starting point for a similar analysis to that performed with the transcriptome 

data, with the aim of identifying proteins whose abundances were significantly growth-rate-

regulated. An identical analysis of the transcriptome data was not possible since no technical 

replicate measurements were available and only two growth rates were studied, µ = 0.1h-1 

and 0.2h-1. 

To attempt to identify growth-rate regulated proteins the normalized proteomics values 

were decomposed, on a protein by protein basis, using a two-factor ANOVA model 

containing only main terms, 

yrl = µ + Rr + Ll + εrl   (2) 
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with Σr Rr = 0,  Σl Ll = 0 and E(εrl) = 0, E(εrl
2) = σ2

where yrl represents the normalized log-ratio for the rth rate and lth limitation. 

Growth-rate regulated proteins were identified as those for which the inclusion of the 

growth-rate main term Rr was statistically significant. This corresponds to a statistically 

significant value for the contrast R0.2 – R0.1, thereby indicating a statistically significant 

change in protein abundance just due to growth rate. As for the analysis of the transcriptome 

data, p-values for the main terms in (2), were estimated from 106 bootstrap data sets 

constructed by re-sampling from suitably re-scaled estimates of the residuals εlr. To correct 

for multiple testing the Q-value software of Storey [21, 22] was used to estimate the False 

Discovery Rate (FDR). 

 

Integrative proteome-transcriptome analysis. Proteome-transcriptome correlations. 

 
Integration of proteome and transcriptome data towards proteome-transcriptome 

correlation studies and analysis of relative changes in translational control efficiencies 

required prior stringent data analysis, use of specific normalization and scaling of ‘omic 

data, leading to equivalent, comparable data sets. Thus, transcriptome data were subjected to 

RMA normalization [8-10], whereas proteome data were MAD normalized [14] and then 

scaled to the average median absolute deviation (to make it as comparable as possible to 

RMA). For proteome-transcriptome correlations, graphs in log. and natural values are 

presented. For studies on relative changes in translational control efficiencies, data sets and 

graphs are in natural values only ( graphs and ratios  log [ (  / ) p ] i  /  log [ (  /  ) tr. ] i  have 

no direct relation with relative changes in translational control efficiencies; see Additional 

data file 7, page 7). 
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Gene ontology (GO) studies 

For gene ontology (GO) studies, a number of GO tools [30] were tested, from which 

GoMiner [31, 32] and GenMAPP [33, 34] were selected, on the basis of their statistical 

analysis capabilities and appropriate visualization tools, to display the significance of over-

represented gene ontologies (biological process, molecular function and cellular component). 

Analyses using GoMiner were thoroughly validated with GenMAPP, and corresponding 

interactive Directed Acyclic Graphs (DAG) (see below), GO maps and tables with selected 

groups of genes were obtained. For studies not covering the whole genome (e.g. proteomic 

studies; ca. 700 proteins per nutrient-limiting condition) SGD GO Term Finder [35] was 

used. 

 

Directed Acyclic Graphs (DAG) 

DAG graphs were created in SVG, -Scalable Vector Graphics-, format (SVG Viewer 

available free from [36]). Once installed, the DAG files can be opened with Internet 

Explorer. SVG works best with Internet Explorer (IE) 5.0, IE 5.5, IE 6, and Netscape 4.7 on 

Windows; and Netscape 4.7 Mac. Use right click to zoom in/out and (Alt + mouse) to 

drag/centre the diagram. Passing above a node shows the GO ontology and genes involved. 

Double-clicking on a node shows all existent relationships of that node in the global gene 

ontology network. 

 

Analysis of protein-protein interactions 

Protein interaction data was extracted from the latest BioGRID database of curated 

protein-protein interactions (BioGRID database, [37, 38], including data from Reguly et al., 

(2006) [39] and new 866 physical and genetic interactions, as of May 1, 2006). Only curated 

physical interactions were used for the analysis. All non-physical interactions (interactions 
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where the method of detection was marked up as one of the following: synthetic lethality, 

dosage rescue, synthetic growth defect, synthetic rescue, epistatic miniarray profile, dosage 

lethality, phenotypic enhancement, phenotypic suppression or dosage growth defect) and 

self-self interactions were excluded. 

Numbers of protein interactions expected by chance were calculated by selecting an 

equivalent number of ORFs at random from the selection of ORFs present within BioGRID.  

Interactions between the ORFs in the random set were then extracted from the known protein 

interaction network and the number of interactions within the set was then calculated.  P 

values were calculated by comparing the observed value to 10,000 random permutations, 

being (in all cases) in the range of  p<1E-4. 
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Steps Data analysis 
  procedures 

Transcriptome Proteome Internal 
metabolites 

External 
metabolites 

      
1 Analytical 

  method 
Affymetrix    
  YG-S98 
GeneChip 

iTRAQ GC-TOF-MS GC-TOF-MS 

 Growth rates (h-1) 0.07, 0.1, 0.2  0.1, 0.2  0.07, 0.1, 0.2 0.07, 0.1, 0.2 
 Nutrient 

limitations 
C, N, P, S C, N, P, S C, N, P, S C, N, P, S 

 Replication 4 1 3 3 
2 Identification and  

   quantification 
Affymetrix 
GCOS 
software [7] 

Genome Annotating 
Proteomic Pipeline 
(GAPP) system [40], 
Mascot score and link 
to the quantification 
data in a relational 
database (see methods).

Mass spectral 
libraries, 
reverse match 
score >700 , 
and analysis of  
pure standards 
(see methods) 

Mass spectral 
libraries, 
reverse match 
score >700 , 
and analysis of  
pure standards 
(see methods) 

3 Heavily-tailed  
  distribution 

Data logged Data logged Data logged Data logged 

4 Experiment-wise 
normalization   

        --- 
 

Each run normalized to   
pooled standard (Fig. S28) 

        ---        --- 

5 Sample-wise  
normalization 

RMA 
normalization 
[8-10] 

MAD (median absolute 
deviation) [14] 

Normalized to 
internal 
standard 

Normalized to 
internal 
standard 

6 Missing value 
imputation (MVI)

Not required MVI   [15] MVI  [15]  MVI  [15] 

7 Measurement-wise 
normalization   

MAD  [14] MAD [14] MAD [14] MAD [14] 

8 Principal 
Components 
Analysis (PCA) 

NIPALS [17] NIPALS [17] NIPALS [17] NIPALS [17] 

      

 
 

Table 1. Data analysis procedures prior to PCA 
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